2023年4月 この範囲を時系列順で読む この範囲をファイルに出力する
TRUE1のT分岐のハウジングには呼び径16の塩ビ管チーズを用いていますが、ケーブルを処理しやすくするためにもう少し太くしたい。内寸は呼び径25がいい感じですが、TRUE1のネジ穴がチーズの外壁に被ってしまい取り付け方で悩む。コップ状のカバーとし、底というかレセプタクルを取り付ける面を厚くすることにしました。
#器具の製作
#器具の製作
TRUE1のT分岐を配線してみました。
ケーブルは圧着したタブ端子がハウジングより顔を出す長さにしましたが、TRUE1のレセプタクルを回してケーブルを捩じりながら押し込むと収まります。
ただ、捩じることによってケーブルが引っ張られるため、マレにですが、先に固定したレセプタクルのタブ端子が半抜けすることがあります。
ハウジングの構造上、組付け後の状態確認が出来ませんのでちょっと怖い。何らかの固定方法が必要です。
タブ端子は全カバーの物を使っていますが、半カバーの物にしてハンダ付けで固定でしょうか。もしくは、TRUE1のタブ端子にケーブルをハンダで直付けでしょうか。
#器具の製作
ケーブルは圧着したタブ端子がハウジングより顔を出す長さにしましたが、TRUE1のレセプタクルを回してケーブルを捩じりながら押し込むと収まります。
ただ、捩じることによってケーブルが引っ張られるため、マレにですが、先に固定したレセプタクルのタブ端子が半抜けすることがあります。
ハウジングの構造上、組付け後の状態確認が出来ませんのでちょっと怖い。何らかの固定方法が必要です。
タブ端子は全カバーの物を使っていますが、半カバーの物にしてハンダ付けで固定でしょうか。もしくは、TRUE1のタブ端子にケーブルをハンダで直付けでしょうか。
#器具の製作
ふと思いついてこんなん試作ってみました。

塩ビ水道管のT分岐にTRUE1のレセプタクルを取り付ける方法です。
TRUE1の取付部は3Dプリンタで作っています。何の仕上げもしてないのはご愛嬌。
塩ビ水道管の接着剤(エスロン)はABSも溶かすようです。ABS接着剤と臭いが似てるので試したところビンゴでした。
溶着なら水漏れの心配はありませんし接着強度も十分です。
先日作ったのはY分岐で、これはT分岐です。
どちらがいいというより使い分けです。
サスバトンに鈴蘭ケーブルごとく横繋ぎしていくならこれの方がいいかも。
寸法の手直しがあるので、もう1セット作って評価しましょう。
Y分岐もそうですが、意外な問題点はケーブルの仕舞い方です。
ハウジングにはレセプタクルの取付穴しか開口部がありませんので、ケーブルの先端が取付穴から顔を出さないと結線が出来ません。この顔を出すための余長が思った以上に仕舞い難いのです。
出来るだけ柔らかく、出来るだけ細いケーブルが望ましいのですが、KIVではなくHKIVなら太さを1ランク落とせます。KIV2.0スケアとHKIV1.25スケアの許容電流はほぼ同じです。
#3Dプリンタ #器具の製作


塩ビ水道管のT分岐にTRUE1のレセプタクルを取り付ける方法です。
TRUE1の取付部は3Dプリンタで作っています。何の仕上げもしてないのはご愛嬌。
塩ビ水道管の接着剤(エスロン)はABSも溶かすようです。ABS接着剤と臭いが似てるので試したところビンゴでした。
溶着なら水漏れの心配はありませんし接着強度も十分です。
先日作ったのはY分岐で、これはT分岐です。
どちらがいいというより使い分けです。
サスバトンに鈴蘭ケーブルごとく横繋ぎしていくならこれの方がいいかも。
寸法の手直しがあるので、もう1セット作って評価しましょう。
Y分岐もそうですが、意外な問題点はケーブルの仕舞い方です。
ハウジングにはレセプタクルの取付穴しか開口部がありませんので、ケーブルの先端が取付穴から顔を出さないと結線が出来ません。この顔を出すための余長が思った以上に仕舞い難いのです。
出来るだけ柔らかく、出来るだけ細いケーブルが望ましいのですが、KIVではなくHKIVなら太さを1ランク落とせます。KIV2.0スケアとHKIV1.25スケアの許容電流はほぼ同じです。
#3Dプリンタ #器具の製作
amazonさんを眺めていたらワイヤーをカシめるクランプが出てました。
この手の工具は一般的に高額ですがとても安い。試しに買ってみました。
ORANGEHOME 圧着ペンチ ワイヤークランプカッター アルミスリーブ かしめ機

造りはお世辞にも良くありませんが、補修とか数十本の製作には使えるでしょう。
JISに準じた締め付けがされるかは不明ですが、試しにカシめたワイヤーは見た目にもしっかりしていて、強く引いても抜ける気配ありません。少なくとも、電工用のリングスリーブでカシめるよりマシではないかと。
安全基準を担保したいならクランプもスリーブもJIS規格適合品を使いましょう。
#工具や資材
この手の工具は一般的に高額ですがとても安い。試しに買ってみました。
ORANGEHOME 圧着ペンチ ワイヤークランプカッター アルミスリーブ かしめ機

造りはお世辞にも良くありませんが、補修とか数十本の製作には使えるでしょう。
JISに準じた締め付けがされるかは不明ですが、試しにカシめたワイヤーは見た目にもしっかりしていて、強く引いても抜ける気配ありません。少なくとも、電工用のリングスリーブでカシめるよりマシではないかと。
安全基準を担保したいならクランプもスリーブもJIS規格適合品を使いましょう。
#工具や資材
本業の合間にTRUE1の分岐ボックスを進めていますが、落下防止ワイヤーの取り付け方を考えていませんでした。普通のブンキーのワイヤーと同じ使い方です。
筐体の外側にワイヤーを掛ける金具を取り付ければいいのですが、言うほど簡単でもありません。プリント物に力が掛かればムシれてしまいそうですし、アルミ角パイプにネジ止めなら強度は十分なものの水対策をしなければなりません。
金具はイロイロありますが、アイストラップが安くていいかなと。平板にネジとワイヤーを通す穴が空いただけのワイヤープレートは安そうで安くありません。形状が立体的なアイストラップの方が安いのには驚いた。
課題は取付けネジの処理です。何も対策しないとネジ穴の隙間から水漏れします。筐体の角パイプは2.0tですから、丸穴ではなくタップを切り、ネジ山にコーキングを塗って締め付ければ目地止めになるでしょう。実際の仕込みでは本体だけでなく接続されたケーブルの加重もかかるので強度に不安がありますが、角パイプの内側からナットを締めればよいと思われます。
#器具の製作
筐体の外側にワイヤーを掛ける金具を取り付ければいいのですが、言うほど簡単でもありません。プリント物に力が掛かればムシれてしまいそうですし、アルミ角パイプにネジ止めなら強度は十分なものの水対策をしなければなりません。
金具はイロイロありますが、アイストラップが安くていいかなと。平板にネジとワイヤーを通す穴が空いただけのワイヤープレートは安そうで安くありません。形状が立体的なアイストラップの方が安いのには驚いた。
課題は取付けネジの処理です。何も対策しないとネジ穴の隙間から水漏れします。筐体の角パイプは2.0tですから、丸穴ではなくタップを切り、ネジ山にコーキングを塗って締め付ければ目地止めになるでしょう。実際の仕込みでは本体だけでなく接続されたケーブルの加重もかかるので強度に不安がありますが、角パイプの内側からナットを締めればよいと思われます。
#器具の製作
とりあえずの探り設定で綺麗にプリント出来ました。一つ前のプリントの不良は解消。
これから数日は「靴屋の小人」さんに日夜頑張ってもらいましょう。1セット5時間半なので、出勤前と寝る前に開始、1日2セットです。
製作数は未定ですが、角パイプを4mも買ってしまったので半分は使おうかなと。角パイプを90mm使うので20個程度作れます。パチモンTRUE1は山ほどあります。
#3Dプリンタ
これから数日は「靴屋の小人」さんに日夜頑張ってもらいましょう。1セット5時間半なので、出勤前と寝る前に開始、1日2セットです。
製作数は未定ですが、角パイプを4mも買ってしまったので半分は使おうかなと。角パイプを90mm使うので20個程度作れます。パチモンTRUE1は山ほどあります。
#3Dプリンタ
フィラメントを使い切ったので別な物に交換。反り難いと高評価の物。
十分綺麗なプリントだし謳い文句の通り反りは少ないけれど、ノズルの温度が合っていない感じがします。縁にバリというかブツブツが出るのです。温度設定をどうするか・・・
購入ページで確認し直したところ、ノズルの推奨温度が今までのフィラメントよりも15度くらい高い。その代わりプラットホームの推奨温度は5度くらい低い。
今のプリンタでノズル温度をそこまで上げられるのか疑問だけど、反りが少ないので使える様にしたい。
改めて条件出しです。
#3Dプリンタ
十分綺麗なプリントだし謳い文句の通り反りは少ないけれど、ノズルの温度が合っていない感じがします。縁にバリというかブツブツが出るのです。温度設定をどうするか・・・
購入ページで確認し直したところ、ノズルの推奨温度が今までのフィラメントよりも15度くらい高い。その代わりプラットホームの推奨温度は5度くらい低い。
今のプリンタでノズル温度をそこまで上げられるのか疑問だけど、反りが少ないので使える様にしたい。
改めて条件出しです。
#3Dプリンタ
3Dプリンタは期待値が出る様になりました。
樹脂成型は難しいですね。
期待値は出たものの、5.7mmにしたM3六角(5.5mm)を挿す穴が緩い。5.5mm丁度は危険なので期待値を5.6mmにして再度プリント中。
5.5mmに対する5.7mmは3.6%の違い。たかが0.2mm、されど0.2mm、一見小さな数字ですがこれだけのクリアランスでガバ付きを感じるんですね。たぶん、丸穴なら気にならないのでしょうけど。
#3Dプリンタ
樹脂成型は難しいですね。
期待値は出たものの、5.7mmにしたM3六角(5.5mm)を挿す穴が緩い。5.5mm丁度は危険なので期待値を5.6mmにして再度プリント中。
5.5mmに対する5.7mmは3.6%の違い。たかが0.2mm、されど0.2mm、一見小さな数字ですがこれだけのクリアランスでガバ付きを感じるんですね。たぶん、丸穴なら気にならないのでしょうけど。
#3Dプリンタ
3Dプリンタは条件が出ました。
廃番になった古いプリンタなのでCAM(スライサ)の設定は揚げませんが寸法補正は出ました。
外形補正はCAMの全体伸縮を100.2%します。
内形補正はCAD上で行い、円なら直径に+0.6mm、多角形なら基準寸法に+0.3mmです。
これらはCAMの他の項目によっても違ってくるので、現在標準としているCAMの設定に於いては・・・という値です。
ただ、上記3点の補正値が定数であることが重要です。サイズによって補正値が違うと難解ですからね。
#3Dプリンタ
廃番になった古いプリンタなのでCAM(スライサ)の設定は揚げませんが寸法補正は出ました。
外形補正はCAMの全体伸縮を100.2%します。
内形補正はCAD上で行い、円なら直径に+0.6mm、多角形なら基準寸法に+0.3mmです。
これらはCAMの他の項目によっても違ってくるので、現在標準としているCAMの設定に於いては・・・という値です。
ただ、上記3点の補正値が定数であることが重要です。サイズによって補正値が違うと難解ですからね。
#3Dプリンタ
汎用マイコンであるArduinoがCPUをarmに変更するらしい。チップは日本のルネサス製を使うとのこと。
ArduinoはRaspberryPiと同類の製品ですが、中身というか考え方は別物です。どちらが作りたい物に適しているかが重要で、どちらが優れているかを議論するのは無駄ですケドね。
現行のArduinoはATmega系を使っています。優秀なマイコンですが8bitです。RaspbrryPiはarmの64bitですから比較に意味がないとしても、流石にパワーアップを考え始めたのでしょう。
Arduinoは単機能のデバイスを作るにはとても効率的です。開発環境のArduino-IDEはとても使いやすく、ほぼC言語なArduino言語で記述するのですが、純C言語の難解な部分を触らずに書けるようデザインされているので取り組み易いと思います。ATmega単体で使う場合は開発環境の構築すら難解でしたが、Arduinoというパッケージになったことで飛躍的に使い勝手が良くなったと思います。世界中のハッカー達がこれでもかとライブラリを揚げているもの良い点です。
私の場合、Arduinoが得意とする単機能デバイスはPICを使えば済んでしまうので使ってきませんでしたが、RaspberyPiを使うには大げさだけどATmegaやPICでは物足りない物を作るのに最適なら新しいArduinoも使ってみたいと思います。
ただ、RaspberryPiを中核にPICを組み合わせるとそこそこ何でも作れるので、開発時間が取れない状況で新機軸に手を出す価値があるかは何とも言えません。
#RaspberryPi
ArduinoはRaspberryPiと同類の製品ですが、中身というか考え方は別物です。どちらが作りたい物に適しているかが重要で、どちらが優れているかを議論するのは無駄ですケドね。
現行のArduinoはATmega系を使っています。優秀なマイコンですが8bitです。RaspbrryPiはarmの64bitですから比較に意味がないとしても、流石にパワーアップを考え始めたのでしょう。
Arduinoは単機能のデバイスを作るにはとても効率的です。開発環境のArduino-IDEはとても使いやすく、ほぼC言語なArduino言語で記述するのですが、純C言語の難解な部分を触らずに書けるようデザインされているので取り組み易いと思います。ATmega単体で使う場合は開発環境の構築すら難解でしたが、Arduinoというパッケージになったことで飛躍的に使い勝手が良くなったと思います。世界中のハッカー達がこれでもかとライブラリを揚げているもの良い点です。
私の場合、Arduinoが得意とする単機能デバイスはPICを使えば済んでしまうので使ってきませんでしたが、RaspberyPiを使うには大げさだけどATmegaやPICでは物足りない物を作るのに最適なら新しいArduinoも使ってみたいと思います。
ただ、RaspberryPiを中核にPICを組み合わせるとそこそこ何でも作れるので、開発時間が取れない状況で新機軸に手を出す価値があるかは何とも言えません。
#RaspberryPi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105